Boundary Behavior of Interior Point Algorithms in Linear Programming

نویسندگان

  • Nimrod Megiddo
  • Michael Shub
چکیده

This paper studies the boundary behavior of some interior point algorithms for linear programming. The algorithms considered are Karmarkar's projective rescaling algorithm, the linear rescaling algorithm which was proposed as a variation on Karmarkar's algorithm, and the logarithmic barrier technique. The study includes both the continuous trajectories of the vector fields induced by these algorithms and also the discrete orbits. It is shown that, although the algorithms are defined on the interior of the feasible polyhedron, they actually determine differentiable vector fields on the closed polyhedron. Conditions are given under which a vector field gives rise to trajectories that each visit the neighborhoods of all the vertices of the Klee-Minty cube. The linear rescaling algorithm satisfies these conditions. Thus, limits of such trajectories, obtained when a starting point is pushed to the boundary, may have an exponential number of breakpoints. It is shown that limits of projective rescaling trajectories may have a linear number of such breakpoints. However, projective rescaling trajectories may visit the neighborhoods of linearly many vertices. The behavior of the linear rescaling algorithm near vertices is analyzed. It is proved that all the trajectories have a unique asymptotic direction of convergence to the optimum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A path-following infeasible interior-point algorithm for semidefinite programming

We present a new algorithm obtained by changing the search directions in the algorithm given in [8]. This algorithm is based on a new technique for finding the search direction and the strategy of the central path. At each iteration, we use only the full Nesterov-Todd (NT)step. Moreover, we obtain the currently best known iteration bound for the infeasible interior-point algorithms with full NT...

متن کامل

Primal-dual path-following algorithms for circular programming

Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...

متن کامل

ABS Solution of equations of second kind and application to the primal-dual interior point method for linear programming

 Abstract  We consider an application of the ABS procedure to the linear systems arising from the primal-dual interior point methods where Newton method is used to compute path to the solution. When approaching the solution the linear system, which has the form of normal equations of the second kind, becomes more and more ill conditioned. We show how the use of the Huang algorithm in the ABS cl...

متن کامل

CSC 2411 - Linear Programming and Combinatorial Optimization ∗ Lecture 8 : Interior Point Method and Semi Definite Programming

In the last lecture, we were introduced to the Interior Point Method. The simplex method solves linear programming problems (LP) by visiting extreme points (vertices) on the boundary of the feasible set. In contrast, the interior point method is based on algorithms that find an optimal solution while moving in the interior of the feasible set. Intuitively, in each iteration of the interior poin...

متن کامل

Augmented Lagrangian method for solving absolute value equation and its application in two-point boundary value problems

One of the most important topic that consider in recent years by researcher is absolute value equation (AVE). The absolute value equation seems to be a useful tool in optimization since it subsumes the linear complementarity problem and thus also linear programming and convex quadratic programming. This paper introduce a new method for solving absolute value equation. To do this, we transform a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 14  شماره 

صفحات  -

تاریخ انتشار 1989